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Abstract

The Galerkin finite-element method is used to solve

the Euler and Navier-Stokes equations on prismatic

meshes. It is shown that the prismatic grid is ad-

vantageous for correctly and efficiently capturing the

boundary layers in high Reynolds number flows. It

can be captured accurately because of the ability to

cluster grid points normal to the body. The efficiency

derives from the implicit treatment of the normal di-

rection. To treat the normal direction implicitly, a

semi-implicit Runge-Kutta time stepping scheme is

developed. The semi-implicit algorithm is validated

on simple geometries for inviscid and viscous flows and

its convergence history is compared to that of the ex-

plicit Runge-Kutta scheme. The semi-implicit scheme
is shown to be a factor of 3 to 4 faster in terms of CPU

time to convergence.

Introduction

Many methods have been attempted for both the

generation of prismatic grids and solution of flows

using prismatic grids. Prismatic meshes have been

generated by optimization methods [1], by solution of

hyperbolic PDEs [2], and by algebraic methods [3].
Unstructured tetrahedral meshes that have been cut

from prisms have also been created using an algebraic

approach developed by Lohner [4] and later modified

by Marcum [5] as well as another approach developed

by Pirzadeh [6]. Prismatic meshes have also been
shown to be an efficient way to obtain inviscid [2, 7]

and viscous [8, 9] solutions for compressible flows.

In the past, however, explicit finite-volume meth-
ods were used to solve the Euler and Navier-Stokes

equations on prismatic grids with the exception of the

work described in Ref. [7] where a semi-implicit line
Jacobi method was used to solve the Euler equations.

On unstructured tetrahedral grids, the linelet method

of solving the problem semi-implicitly has also been
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demonstrated [10, 11].

In the present paper, an improved method for treat-

ing the structured direction in a prismatic grid in an

implicit manner is proposed(Figure 1). The method is

based on Runge-Kutta time stepping, which is similar

to, but not the same as that used in Ref. [12] for struc-

tured grids. The new time stepping method has better

stability characteristics and as a result has better con-

vergence properties [13]. The time stepping method
was implemented in the Galerkin finite-element frame-

work which was used for discretizing the Euler and

Navier-Stokes equations.

Fig. 1 Column of prisms on a triangulated surface

The basic idea behind the semi implicit method is

as follows. If a fully implicit scheme is used, a ma-

trix with a large bandwidth would have to be solved.
However, due to the structure in the body-normal di-

rection of a prismatic grid, such a matrix always has a

block-tridiagonal subset. If all the terms which are not

contributing to this subset are dropped, then the prob-

lem reduces to the solution of a 5 × 5 block tridiagonal

matrix for three dimensional problems. This means

that the standard Thomas algorithm [14] can be used.

The use of this semi-implicit concept is embedded in

a diagonally dominant manner in the Runge-Kutta

multi stage scheme.

The implicit treatment of the body-normal direction

can be thought of as a line-Jacobi algorithm. However,

unlike the work in Ref. [12], all terms contributing to

the main diagonal from all directions are used in the

solution of the block tridiagonal matrix system. Ac-
counting for these terms is similar to a block-Jacobi

method in the body-tangent dircctions. The block-



.lacobim('ttu.t hasbettm"stabilityandconvergence
propertiesthanexplicitmethods[i51whichimproves
thestabilityandconvergencepropertiesof thepresent
scheme.

The presentpaperusesa Galerkinfinite-element
methodforspatialdiscretization.Theunsteadyterms
oftheequationsarediscretizedandlumpedto thedi-
agonalto drivethesolutionto thesteadystate.It is
in thisartificial timesteppingthat botha standard
explicitRunge-Kuttaandthe semi-implicitRunge-
Kuttaschemesareimplemented.

Wefirstpresentthegoverningequationsanddiscuss
theGalerkinfinite-elementdiscretizationofthespatial
terms. Wethendiscussthe temporaldiscretization
andpresentthetimesteppingscheme.Comparisons
betweenthe explicitandsemi-implicitschemesare
shownforseveralinviscidandviscoustestcases.These
comparisonsshowthat thesemi-implicitalgorithmis
approximately3 to 4timesmoreefficientthanitsex-
plicit counterpart for the solution of both Euler and

Navier-Stokes equations. Several solutions are also

presented as validation of the present algorithm.

Governing equations

The Navier-Stokes equations for describing viscous

fluid flow in three dimensions can be written in integral
form as

where Q is the state vector of density, momentum,

and internal energy per unit mass.

= (p,pu,p,,,_, _) (2)

9" = (F - F_)_ + (G - G_)) + (H - Hv)]¢ (3)

F, G, and H are the convective flux terms and F_,

G_, and H_ are the viscous flux terms in x, y and z

directions respectively. The pressure term in the flux
functions is defined with respect to Q as follows.

p = (3' - 1)(e - lp(u2 + v"2+ we))
2

For inviscid flow simulations, F, = Gv = Hv = 0.
The viscous fluxes are defined in terms of the viscous

stress tensor [16].

Spatial discretization

The steady version of the Navier-Stokes equations
can be written as

v. 9"dr= o (4)

where 9" is the flux function. By the weighted residual

method, we multiply by a test function ¢ and inte-

grate by parts. The resulting integral equation can be

Oxl)r('ssed as a sum of tim integrals over mu'h prism.

,p:?-. hdS- To. 9"dI = 0 (5)

e=l. f2.

where e is the prism counter and ne is the number of

prisms. _ is the prism itself and 0_e refers to the

faces of the prism.

The surface integral in equation 5 cancels at each

internal face of the grid. At the boundaries of the do-

main, the surface integral does not vanish. Therefore,

this surface integral is evaluated at the boundary face
and its contributions are accumulated in the terms for

the vertices that make up the face.
A standard Galerkin finite-element scheme with bi-

linear shape functions is used to approximate the vol-
ume integral terms. The flux function is evaluated

with the shape functions N,, as follows.

6

9" = _ 9"mi_ (6)
rn:l

where 9"m is the flux at the vertex m and 3,,, is the

associated shape function.

Another choice for approximating a flux function for

non-linear flux terms exists. For example if the flux
function 9" = u2, we could approximate it as

6

This second choice has been shown to not conserve

mass [17].

Substituting the test function and equation 6 into

equation 5, we get

6 6

f_, rn=l n=l

Due to the compact support property" of the shape

function, the test function is only non-zero at the ver-

tex m. So equation 8 yields one equation for every
vertex in the mesh.

The integral in equation 8 is evaluated on each prism

and the appropriate contributions are distributed to

the vertices of that prism. In order to accurately ap-

proximate this integral, a six point quadrature rule is

used on the right triangular prism(Figure 2) to evalu-
ate the integral. The coordinates (_,r/,_) are the local

directions on the right triangular prism. The values of

the weights and the locations of the quadrature points

are tabulated in [13] along with expressions for the
coordinate transformation.

Applying this coordinate transformation to equation
8, we get the following integral on a right triangular

prism.

fff v-,lVXo,.N,Y,,lJld_drldC, =
0 (9)
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Fig. 2 Mapping a pentahedron to a right triangu-
.lar prism

where VN = [N_, N o, N_] T and J is the coordinate
transformation Jacobian.

Solving equation 9 at each vertex corresponds to

the solution of a system of nonlinear equations. A

common method of solving a nonlinear system is by

linearizing the equations. We linearize equation 9 by
Newton's method using 5:k+l = yk + AkSQ where k

can be thought of as an iteration index.

After linearization, equation 9 becomes

- fff[J-,le .mN Y,,lJld dod¢
The resulting system of equations can be written as

ASQ = _ (II)

where A isthe coefficientmatrix which getscontribu-

tions from the coefficientto 5Q on the lefthand side

of equation II. We solvefor the unknowns 6@ :Ris
the residual.

Temporal discretization

To implement a time-steppingscheme forthe pris-

matic grid in the Galerkin finite-elementframework,

the unsteady term of the Navier-Stokesequations

ff (otO)_ (12)

is multiplied by the shape function and subsequently

the time derivative is approximated as

where (fq = Qn+l _ Q, and n is the time step counter.

Using a bilinear shape function and equation 6 with
9" = 5q, we approximate equation 13 as

(issD, )i,_ _ N,,dV _q_z (14)
At

This integral results in a left hand side which once

again has a sparse coefficient matrix. We lump all

terrns from this inh,gral to tit,, diagonal. This step

is not necessary for sonli-implicit or implicit schemes.

The following time term results at every vertex m

(N )N,,_ Z N,_dV ,iq,,,
At

n=l

(15)

Defining the integral term in equation 15 as AI,',

explicit and semi implicit Runge-Kutta schemes are

developed below. A p-step explicit time stepping

scheme for taking Q from time n to time n + 1 can
be written as

Q(O) __ Qn (16)

Q(k) = Q(k-,) (17)
1 At

+ _(Q(k-,))
p+ l-kAV

_ (Qa-1) _ Q,,)

Qn+l = Q(k=p) (18)

where k refers to step number and ranges from 1 to p.
The variable 5_ is the residual from the inviscid and

viscous spatial terms of the equation.

A implicit version of the same method is developed

by taking the residual at the new step and linearizing

with respect to the previous step. The kth step of

the linearized implicit Runge-Kutta procedure can be
written as

[(p+ - k)S- °_(Q(_-_))] = (19)
At

1 _Q(k)
AV OQ ]

_v_(O (k-_)) - (p + 1 - k) (Q(k-_) _ O,,)

where (fQ (k) = Q(k) _ Q(k-1) and the bracketed part
on the left hand side would form the left hand side

matrix.

For the semi-implicit scheme, we only retain the

components of the flux Jacobian matrix which con-

tribute to the tridiagonal part of the matrix. This
results in a left hand side matrix with a 5 x 5 block

tridiagonal structure. The scheme can be thought of as

the line-Jacobi scheme for a single Runge-Kutta step

with contributions to the diagonal from all neighbor

points.

[(p+ I - k)I - _'-_---_TRID (cg_(Q`#_-l>) ) ] ,$Q(k)
\ OQ j

At k 1
--&-_:R(Q ( - )) - (p + 1 - k)(Q {k-l) - Q') (20)

where the TRID symbolizes that only the contribu-

tions to the tridiagonal portion of the matrix are re-
tained.

Time step computation

To compute a conservative estimate of the time step,

the monotonicity analysis done by Barth [18] is used.



Fig.5 PressureontheONERAM6wing at Moo =
0.84, a -- 3.06, inviscid flow

case was 9.1688 x 10-4seconds/iteration/vertex.

Inviscid flow over ONERA M6 wing

The inviscid flow over a ONERA M6 wing is pre-

sented to show the use of the prismatic grid method

on a wing geometry at a transonic Mach number. Fig-

ure 5 shows a solid surface plot of the pressure on the
upper surface. A lambda shock structure is easily seen

in this view. Figure 6 shows the Cp comparison to the

experimental data [21] and the convergence behavior
of the explicit Runge-Kutta method. Due to the high

Re number of the experiment which was 11 x 106, we

are able to compare the inviscid solution to the exper-

iment. We find that the pressure at the surface was

predicted by the present method with reasonable ac-

curacy. The location of the shock was not captured

precisely. The present solution agrees with the trend

documented in inviscid flow literature such as Ref. [18].

Flat plate boundary layer

To validate the viscous capability of the code, the

flat plate boundary layer flow is computed and com-

pared to the Blasius velocity profile. The grid for this

test case is set up as four rows of triangles along the

plate surface and then prism columns emanating into

the direction away from the plate. The grid is highly

stretched with cells near the surface having aspect ra-
tios of the order of 750:1.

A velocity profile is compared to the Blasius solu-

tion [22] of the boundary layer equations in Figure 7.

The numerical solution compares to the exact solution

very well.

Laminar viscous flow over ONERA M6 wing

Finally, the viscous flow over a ONERA M6 wing

is computed. Since a turbulence model is not im-

plemented, we compute the flow around a ONERA

M6 wing at a Re number of 50000. The test case is

perf_rmed at a M;tch tmmber of 0.6 anal z,,ro angle

of attack. The grid is composed of 171135 vertices

and 325248 prisms. A c-type grid top(_logy was used

to cluster points in the wake region. Because no ex-

perimental observations exist at this Re number, the

pressure coefficient is compared to a numerical solu-

tion from the OVERFLOW code [23] in Figure 8 at

several stations along the span. The two numerical so-

lutions agree very well. OVERFLOW is a structured

grid compressible Navier Stokes solver.

Convergence studies

Parabolic bump

The semi-implicit method was first tested by solv-

ing the Euler equations on a 10% parabolic bump. The

comparisons were performed on an SGI Indigo2 with a

R10000 processor on a stretched grid containing 4805

vertices and 7200 prisms. The 2-, 3-, and 4-step semi-

implicit Runge-Kutta methods are compared to the

3- and 4-step explicit Runge-Kutta method. In these

multi step methods, variations are possible where the
left hand side matrix is not recalculated at all the

steps [24]. For the 4-step Runge--Kutta method, we

compare the scheme where the matrix is recomputed

only at the first and third steps to assess the effect of

not updating the left hand side.

The convergence history for explicit and semi-

implicit methods is presented in Figure 9 and is a clear

indication that the four step semi-implicit Runge-
Kutta method is the fastest method. A closer look

at the numbers in Table 1 unveils several details. The

Mem column reveals that the semi-implicit methods

take up more than twice the memory of the explicit
method. From the normalized CPU time consumed

per iteration in column CPU we discover that the

semi-implicit method can be more than twice as ex-

pensive as the explicit methods. However, the Time

column reveals that the overall efficiency(defined as

time to convergence) of the semi-implicit schemes is
up to 4 times better than the explicit methods. Fi-

nally, not recomputing the matrix at every step slows

convergence.
The number of iterations and total CPU time re-

quired to converge the solution to a correction of 10 -_

is reported in Table 1.

Sphere

To further verify these results, we perform another

comparison of the 4 step explicit method and the 4
step semi-implicit method. We use the inviscid flow

around a sphere for this comparison. The prismatic

grid used for this comparison is larger than the bump
case with 18000 grid points to make sure the parabolic

bump results were not due to the small problem size.

The convergence history from the sphere test case is

shown in Figure 10 and the CPU times are compared

in Table 2. Once again, the semi-implicit method per-
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Table 1 Comparison of explicit Runge-Kutta schemes to the semi-implicit schemes for inviscid flow over

a parabolic bump

Table 2
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Comparison of the explicit scheme to the seml-implicit schemes for inviscid flow over a sphere
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Table 3 Comparison of the explicit scheme to the semi-implicit scheme for viscous flow over a flat plate
at M_ = 0.5, and Re = 100000
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Fig. 7 Velocity profile for flow over a fiat plate at
M_ = 0.5, Re = 100,000

forms better. The semi-implicit method is an order of

magnitude faster by number of iterations and about 3
times more efficient in terms of CPU time.

Flat plate boundary layer

The advantage of the semi-implicitmethod isalso
demonstrated for viscous flows. The simulation of

the boundary layerflow over a flatplateischosen as

the firsttestcase. The comparison isdone with two

separate uniform grids of cell aspect ratio 5 and 10 re-
spectively to emphasize the effect of the aspect ratio on

the rate of convergence obtained by the semi-implicit

scheme. The cell aspect ratio here is computed based

on the cell width divided by the cell height. The width

is computed using the fact that the flat plate triangu-

lation was made from a uniform structured grid.

The aspect ratio 5 grid has a total of 15655 vertices

and 24000 prisms, whereas the aspect ratio 10 grid is

simply twice as dense in the direction normal to the

plate. The convergence histories are shown in Figure
11 and the statistics are tabulated in Table 3. The

CFL numbers are based on the explicit time step in
order to establish a trend with respect to the aspect

ratio of the grid.

A comparison of the statistics for the aspect ratio 5

results to the aspect ratio 10 results shows that though

the explicit method takes almost twice as long on the

denser grid, the semi-implicit method takes approxi-

mately the same number of iterations. The principle
reason for this can be attributed to the fact that the

same time step for both aspect ratio grids can be used

for the semi-implicit method, while a smaller time step

is required for the explicit method due to stability re-
strictions.

ONERA M6 wing

Finally, the ONERA M6 wing test case is used to

verify" that the convergence rate improvement is also
realized on a mesh with varying aspect ratios in dif-

ferent parts of the grid. The viscous solution over the

ONERA M6 wing is performed at Moo = 0.6 at zero
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I t1Steps Method [s/iter] _ [Kb] CFL Iterations[ [s]

Semi-implicit 99 1.46 172317 j 3.0 j 1800 178200 0 3

Table 4 Comparison of the explicit scheme to the semi-implicit scheme for viscous flow over an ONERA

M6 wing at Moo = 0.6, and Re = 50000

angle of attack and a Re = 50000. The grid for the test

case consists of 171135 vertices, and 325248 prisms.

Although the cell aspect ratio varies in different parts

of the mesh, near the surface of the wing they ranged

between 100 and 1000.

The comparison between the residual histories of

the four step explicit and semi-implicit Runge-Kutta

methods is shown in Figure 12, and the associated

statistics are compiled in Table 4. The CPU times

reported are for a single CPU on an Origin2000. Once

again, tim semi-implicit method is seen to have bet-

ter convergence properties and is the more efficient

method.

Concluding remarks

The use of prismatic grids allows for fast conver-

gence and for accurate solution of the flow field. The

finite element flux formulation is validated for invis-

cid and viscous flows with a variety of aspect ratio

grids. The inviscid flow over a sphere is presented and

is in favorable agreement with the known potential so-

lution. The inviscid flow over a ONERA M6 wing is

computed at transonic Mach numbers. It is found that

the pressure at the surface of the wing is in reasonable

agreement with the experimental results [21] except

for the location of the shock.

For the validation of the prismatic grid method for

viscous flows, the case of the flat plate boundary layer

is compared to the analytical solution of Blasius [22].

It is found that the computed velocity profile is in
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respectable agreement with the analytic solution. Fi-

nally, viscous flow simulation over the ONERA M6

wing is presented and compared to the numerical so-
lution from the OVERFLOW code. The pressure

distributions at the surface were found to be in good

agreement.

Comparisons are made with test cases to analyze

the convergence benefits of the semi-implicit method

over the explicit methods. The semi-implicit method
is 3 to 4 times faster than the explicit method and

it becomes more useful with higher cell aspect ratios.

This was shown by performing numerical experiments

where the convergence rates for several test cases of

varying sizes were used to compare the semi-implicit
method to explicit methods. For the cases where the

aspect ratio of the prism cells was carefully controlled,
we see convergence acceleration consistent with that

predicted by theory. Tables 2 and 4 reveal that for
a mesh where the grid aspect ratio is not carefully

controlled, the semi-implicit method is still faster than

Convergence comparison for flat plate boundary layer flow
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Fig. 11 Convergence history comparison for vis-
cous flow over a flat plate at -_Ioo = 0.5_ and Re =

100000

a traditional Runge-Kutta method by a factor of 3.

Further work in assessing the usefulness of the semi-

implicit schemes is still needed. The relationship of

the semi-implicit methods to the line-Jacobi precon-

ditioning methods of Allmaras [25] should be investi-

gated. The possibility of implementing agglomeration
multi-grid in the unstructured directions is also at-
tractive. Another attractive method worth analyzing

is the LU-SGS implementation by Nakamura [26] on

unstructured grids and the subsequent application on

prisms by Sharov [27]. A combination of this method
with line relaxation should be developed.
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